Stock Embeddings Learning Distributed Representations for Finncial Asset (Dolphin et al. (2022))

http://lellep.xyz/blog/reading-group-materials.html

Paper presentation for Statistical Physics Reading Group

2023-05-03

The University of Edinburgh

By: Martin Leller (http://lellep.xyz)

Duerview		· · · · · · · · · ·	
- ML primer	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·
- Introduction	· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
- Maths	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
- huplementation	· · · · · · · · · · ·		
- Use cases	· · · · · · · · ·	· · · · · · · · ·	
	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · ·		
· · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · ·		

ML	pnuer		(ML	= mo(lince	learning)
	Tlus			ML	projec	\$!
What	you	NEED		fr	ML	project:
	Problem	to	solv	le I	· · · · · ·	
· · · · · · · · ·	Data	· · · · ·	· · · · ·	 	 	· · · · · · · · · ·
	Alsonithu		Preo Los	liction fc	alson t	Hщ
			Opt	inser		
· · · · · · · · ·	· · · · · · · · · · ·	 	· · · · ·	 	 	

Introduction
Prollem to solve:
Turn an asset of like "Apple luc"
into a vector <u>e</u> Apple E RN. Generally,
Lai ERN should be dense, i.e. all
its entries should be non-zero & thereby be used.
E.g. <u>C</u> ai should not be a unit vector (which are also called one-but car- codings). Data:
Prices of 500 largest W companies ajournet time, i.e. Pt.
Specifically, this set of data is called S&PSOD

Inspiration Comes from "Natural lansuage processing " (NLP), e.g. "continuous bay of words" approach. turned into vecwords are There, tors ("word 2 ver" by [Mikolov 2013] [Pennington 2014]), $\underline{e}_{hi} = (0.7, 0.3)^T \&$ e.g. $C_{\text{hello}} = (0.8, 0.35)^{+} \&$ $e_{yq} = (-0.1, 0.5)^{T}$ Use ful for sundarity $\frac{\underline{e}_i \cdot \underline{e}_j}{\|\underline{e}_i\| \| \|\underline{e}_j\|}$ v cosine of anote between likely sim(e; e;)7 tart al < similar Sim (eni, e helli) = 0, 992 e not so similar Sim(Ehi, Ebye) = 0,206

& arithmetics [Mikolou 2013]: Ching - Chant Ewoman 2 Equeen en en en en $\Rightarrow \alpha \kappa i 1$ Also we fut in many downstream ML tosks that operate on languege. E.g. Transformer models that power large language models like GPT undel, à hence also ChatGPT, we word (or to be precise: token) embeddings [Vaswani (2017) MIPS].

Maths 2023-04-28
Frankwork & prediction algo
$0 \mathcal{M} = \{ \alpha_{1}, \dots, \alpha_{1}, \dots, \alpha_{n} \} \sim \text{asset universe}$
$0 p_{a_i} = \left\{ \begin{array}{c} a_i \\ p_0 \\ p_1 \end{array} \right\} \gamma p_T \gamma p_T $
$\rightarrow \Upsilon_{\alpha_i} = \{ \Upsilon_{1}^{\alpha_i}, \ldots, \Upsilon_{T}^{\alpha_i} \} \qquad \forall /$
$\tau_t^{a_i} = \frac{Pt - Pt - I}{\frac{q_i}{Pt - I}} \sim returns$
o Construct context data set by selecting $\forall a_i \& t S(a_i, t) \forall he C assets aj$ that minimise $ r_t^{a_i} - r_t^{a_j} $
> one obtains dataset of the /ulxT
O Xai ~ one-hot encoded vector, i.e. is components $(X_{ai})_{ij} = \delta_{ij}$

· Define unbeddings matrix
$\bigcup_{i=1}^{n} = \begin{pmatrix} -e_{i} & -e_{i} & -e_{i} \\ \vdots & \vdots & e_{i} \end{pmatrix} \in \mathbb{R}^{ u \times N}$
$(-e_{1u1}-/$
o given S(ai, t), compute hiddle state as mean embedding
$\underline{h} = \underbrace{\Psi}_{=}^{+} \left(\frac{1}{c} \underbrace{\sum_{i=1}^{c} X_{i}}_{i=1} \right) \text{ with } a_{j_{i}} \in S(a_{i}, t)$
· Lestly compute neural network (NN) prediction as
p(target) context) = roptmax (ULL)
with $(softmax(\frac{1}{2}))_{i} = \frac{e^{\frac{1}{2}i}}{\frac{1}{2}e^{\frac{1}{2}i}}$ for $i=1,, K$ $\xi = (\frac{1}{2},,\frac{1}{2}K) \in \mathbb{R}^{K}$, $\int_{j=1}^{j=1} i.l.$, $softmax$ pro- duces a discrete probability discharged.

Ti	ro f	possibly	NOji((VC	duction	Strat	- Crille	· · · ·
0	Nov	y veo	l 1;	di	Gerut	weig	Ld wy	· · ·
0	Νοίζι	red.	2;	E×c	Inde		;,t) if	
· ·	· · · · · ·	· · · · ·	· · · · · ·	$\gamma_t^{\alpha_i}$	statis	ncally	COMMON	· · · ·
• •	· · · · · ·	· · · · ·	 	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · ·	· · ·
· ·	· · · · · ·	· · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · · ·	· · ·
• •	· · · · · ·	· · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · · ·	· · ·
· ·	· · · · · ·	· · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · · ·	· · ·
• •	· · · · · ·	· · · · ·	 	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · ·	· · ·
· ·	· · · · · ·	· · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · · ·	· · ·
• •	· · · · · ·	· · · · ·	 	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · ·	· · ·
· ·	· · · · · ·	· · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · · ·	· · ·
• •	· · · · · ·	 	 	· · · · ·	· · · · ·	 	· · · · · · · ·	· · ·
· ·	· · · · · ·	· · · · ·	 	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · · ·	· · ·

Loss fot Loss function defines optimisation objective. Here we want to predict tarjed asset given context to then obtain W which stors the cubedding. Consider a training somple S(a;, t) of fanget asset a; at time t. We now compare the predicted probability over assets from the NN, θ) $\in \mathbb{R}^{|\mathcal{U}|}$ $P_P(a_j \mid J(a_i, t))$ ^R predicted NN parameters W to optimise the ground truth, to $P_{t}(\alpha_{j} | f(\alpha_{i}, t)) = (\delta_{iK})_{K=1,..,1W} \in \mathbb{R}^{|\mathcal{U}|}$ n' true

lass function is chosen to be The categorical crossentspy so that fle loss of a single sample is computed the as: $l(p_t, p_p) = -\sum_{\alpha} p_t(\alpha) \log p_p(\alpha)$ Motivation believe categorical crossentropy loss: Use Kullback-Leibler (KL) di-Vergence $KL(pt, pp) = \sum_{\alpha} pt(\alpha) \log(\frac{Pt}{pp})$ $\log \left(\frac{M}{N}\right) = \sum_{n} p_{t}(a) \left[\log p_{t} - \log p_{p}\right]$ $= \sum_{a} p_{t(a)} hog p_{t(a)} - \sum_{a} p_{t(a)} hog p_{p(a)}$ = : $H(p_t, p_p)$ = const = 0=> omitted for opti-misation !! - ++ (* p++ *) *

Optimischa

Optimise W to minimise loss to approach Pt vill pp, which is actually only a proxy to obtain <u>e</u>ai tai. Basic idea is called stochastic gradient descent (SGD). Consider loss over batch: $L(\theta) = \frac{1}{5} \sum_{i=1}^{5} \left(\left(P_t(a_j | D_i) \right) P_p(a_j | D_1, \theta) \right)$ w/ b= basel size, which is a hyperparameter that is to be truned manually, and Di the i-th sample from det batch D. Side note: Doining all batches, one obtains the full training dataset D, $\mathcal{D} = \left[\left[S(a_1,t_1), S(a_1,t_2), \dots, S(a_{|\mathcal{U}|},T) \right] \right]$

ophimisation step is per-Lastly, the formed as $Q_{\rm HCW} = Q_{\rm old} - \gamma \nabla_{Q} L(Q)$, W/ y as learning rate that is yet duother hyperparameter that is be tured manually, 10 note 1: There are much more Side sophybicated ophiuses than 560. Most prople use those more sophisticated ones. Side note 2 In algorithm called "back propagation is used to compute VoL(0) for NNJ of always arbitrary topology.

huplementation huplemented to compute one batch, that is then used for ophimisation step, jum taneously.

Me cases & benchmarks Use embeddings as measure for similarity between asset; traditionally, come lations are used for that. Quality of unreddings: Neighbours: Table I Anothmetics: Table II - Visualisation; Fig. 3 Potential use: Construct hedged portfolio: Fig. 4 (Tables & Figs refer to) Dolphin et al. (2222).)